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In this paper, potential synthesis techniques for mammalian vocalisation sound effects are analysed. Physically-inspired 

synthesis models are devised based on human speech synthesis techniques and research into the biology of a mammalian 

vocal system. The benefits and challenges of physically-inspired synthesis models are assessed alongside a signal-based 

alternative which recreates the perceptual aspects of the signal through subtractive synthesis. Nonlinear aspects of 

mammalian vocalisation are recreated using frequency modulation techniques, and Linear Prediction is used to map 

mammalian vocal tract configurations to waveguide filter coefficients. It is shown through the use of subjective listening 

tests that such models can be effective in reproducing harsh, spectrally dense sounds such as a lion’s roar, and can result 

in life-like articulation.

INTRODUCTION 

There is increasing demand in the film and video game 

industries for adaptable, interactive sound effects whose 

output can be adjusted through user action, such as video 

game players or a sound designer creating effects for 

film. This has motivated much research into synthesis 

models based on procedural audio [1]. Attempts have 

been made to reproduce a large number of sound effects 

with a small number of synthesis models using high-level 

parameters that control the output intuitively [2]. Animal 

sound synthesis offers high potential in this regard, since 

they are commonly used in video games and often 

adapted to produce sounds for fictitious creatures, but the 

process of recording real-life animal vocalisations to fit 

the requirements of multiple video game situations can 

be very difficult. Research into the animal vocal system 

[3] suggests that human speech synthesis techniques such 

as the source-filter methodology used in [4] can also be 

applied to animals. This paper examines this approach, 

focusing on the reproduction of complex vocalisations by 

mammals such as lions, tigers and wolves. 

Source-filter synthesis models for human and animal 

vocalisation sound effects fall into two main categories: 

physically-inspired models, such as [2], and signal-based 

models such as those outlined in [1].  

Physically-inspired models are closely linked to the 

physics of sound. Their parameters are of a physical 

nature, and as such can be controlled in a way that 

corresponds to the real world. Such models can be 

accurate and respond intuitively to parameter changes, 

but also involve much complexity which is undesirable if 

processing capabilities are limited. 

For these reasons, signal-based approaches, which aim to 

recreate the perceptual quality of a signal through non-

physical techniques, are often favoured for their 

simplicity. While physical vocalisation models involve 

an excitation signal based on the movement of the vocal 

cords, signal-based models don’t concern themselves 

with the physical movement itself, but aim to recreate the 

signal through other means, such as waveshaping. 

Similarly, the vocal tract, through which the excitation 

signal resonates, is often modelled in a physical system 

using a waveguide filter whose delay segments represent 

the propagation of sound waves through the vocal tract, 

and whose filter coefficients directly relate to the shape 

of the tract [4]. A signal-based system reproduces the 

filtering effect of the vocal tract without modelling wave 

propagation, often using a series of band-pass filters [1]. 

This research hopes to advance the state of the art of 

mammalian vocalisation synthesis through modelling of 

nonlinearity in the larynx and modelling of vocal tract 

losses. It also aims to show that accurate vocal tract 

configuration through Linear Prediction can result in 

realistic articulation, motivating further research into 

comprehensive documentation of system parameters 

enabling synthesis of a vast number of animal sounds. 

In this paper, section 1 discusses existing research in the 

field of animal vocalisation synthesis, and the physics of 

the mammalian vocal system. Section 2 describes the 

software design and synthesis implementations, which 

were performed in Pure Data. Sections 3 and 4 are 

analysis and testing of example sound effects. 

1 BACKGROUND AND LITERATURE 

1.1 The Physics of Mammalian Phonation 

Most animals share a common method of producing 

sound [3], similar in many aspects to the human vocal 
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system, in which phonation occurs due to the existence 

of a muscular diaphragm pumping air from the lungs 

through the larynx. The existence of elastic membranes 

in the larynx of mammals, called ‘vocal folds’, enables 

complex phonation. 

The term ‘vocal tract’ is used to describe the pharyngeal, 

oral and nasal cavities through which the sound must pass 

to reach the mouth. The length and shape of the vocal 

tract, which mammals are able to alter, determines the 

resonant frequencies at which the air travelling though it 

will vibrate. These frequencies are called formants. 

Through analysis of the spectral dynamics of mammalian 

vocalisation it has been found that the first two formants, 

F1 and F2, have significant potential for variation during 

phonation, 23% and 61% respectively [5]. Additionally, 

the formant dispersion (the spacing between F1 and F2) 

is thought to be the most salient indication of body size. 

1.2 Nonlinearity in the Mammalian Vocal System 

Figure 1 highlights the position of the vocal membrane, 

which is attached to the vocal folds but can oscillate with 

very different behaviour, resulting in nonlinearity [6]. 

The vocal tract length and jaw cross-sectional areas of a 

lion change with respect to time [8], and such changes to 

the vocal tract result in dynamic formant structure. 

Studies of the functional morphology of tiger and lion 

vocal folds conclude that the square-like shape of the 

folds, which are very capable of stretching and shearing 

at low energy levels, allow for phonation (including 

nonlinearities) to occur at very low frequencies [9]. 

1.3 Existing Vocalisation Synthesis Techniques 

Various attempts have been made to model such potential 

causes of nonlinearities present in the mammalian vocal 

system. For instance, [10] uses a mass-spring model for 

the vocal folds to implement nonlinearity using a van der 

Pol oscillator. 

A signal-based model for animal vocalisations is outlined 

in [1], which consists of a parametric waveshaper used to 

recreate broadband excitation signals. A regular pulse 

sinusoid is modulated with another cosine function 

representing “vocal cord ripple”, creating sidebands 

around the signal’s harmonic components. This signal is 

passed through multiple parallel band-pass filters to 

create the desired sound texture. 

Existing physical implementations of a human vocal tract 

system, such as [4], are based on the Kelly-Lochbaum 

waveguide filter [11], which models left- and right-

travelling waves propagating through sections of the 

vocal tract modelled as acoustic tubes (cylinders) of 

varying size, separated by scattering junctions whose 

coefficients directly correspond to the vocal tract 

segment size in relation to neighbouring segments. 

Figure 2 shows a small section of a waveguide filter 

system similar to those used in human speech synthesis. 

The vocal tract scattering coefficient, 𝑘𝑖, for segment i is 

calculated as follows, where Ri is the radius of vocal tract 

segment i: 

 

𝑘𝑖 =
𝑅𝑖−1 − 𝑅𝑖

𝑅𝑖−1 + 𝑅𝑖

 

 

2 MODEL DESIGN 

2.1 The Glottal Flow Model 

The system described here was implemented in Pure 

Data, with the exception of Linear Prediction analysis, 

which was performed in MATLAB. We model the glottal 

pulse using Equation (2) below. This is based on [4] and 

[12], with some changes aiding the usability of the 

system parameters. Parameter restrictions were applied 

to prevent the glottal flow from resulting in unrealistic 

values. The motivation for such a model is to ensure that 

the resultant glottal flow waveform closely matches the 

physical movement of the vocal cords, as outlined in 

[13], without introducing too much model complexity. 

A noise factor is applied to the time-domain waveform, 

ensuring that noise only occurs during opening and 

closing. This obeys the observations in [4], where it was 

shown that noise was most prominent at these points. The 

glottal flow is then produced through implementation of 

wavetable synthesis. 

 

Figure 1: Diagram taken from [7]. The middle of the 

larynx. The vocal membrane extends upwards from the 

vocal fold, which covers the thyroarytenoid muscle 

(TA) 

(1) 
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2.2 Modelling Nonlinearity in the Mammalian Vocal 

System 

Multiple nonlinear phenomena can be observed in the 

mammalian vocal system [6]. Causes of such phenomena 

include vocal folds oscillating at different frequencies or 

oscillating asynchronously, oscillation of the vocal 

membrane and stretching and shearing of the surface of 

the tract. In the physically-inspired models presented in 

this paper, such complexities are replicated using 

amplitude and frequency modulation (FM) synthesis. A 

user control parameter was built containing 6 levels of 

complexity, implemented as follows: 

1.  Limit Cycles. No amplitude modulation or frequency 

modulation is introduced, representing a biological 

system in which the oscillators (vocal cords) are 

synchronised. 

2. Shimmer. Amplitude modulation is introduced with a 

low modulator frequency to recreate the effect of natural 

variation in vocal fold vibration. 

3. Jitter and Subharmonics. Recreate the effect of 

synchronous vocal folds vibrating at frequencies with an 

integer ratio to each other. 

4. Inharmonic Sidebands. Frequency modulation 

replicates the effect of desynchronised vocal folds 

vibrating at frequencies that do not have an integer ratio 

to each other. 

5.  Multiple-Nonlinearities. FM with a series of 2 

modulators, creating a complex wave with many 

sidebands replicating the interaction of the vocal folds 

with the vocal membrane. 

6. Deterministic Chaos. Introduce a third modulator to 

the FM series (3) so that the signal replicates 

deterministic chaos occurring due to stretching and 

shearing of the vocal membrane, the vocal folds and the 

vocal tract walls simultaneously: 

M is the synthesis lookup table size, 𝐴𝑚𝑖
 is the amplitude 

of modulator i, 𝜔𝑔 is the fundamental frequency of the 

glottal waveform, 𝑔[𝑛]. 
For comparative purposes, a simpler method of nonlinear 

synthesis is also implemented and tested in which signal 

complexity is introduced by wrapping an amplified 

phasor back on itself to create small packets of waves 

whilst maintaining the fundamental signal frequency. 

This creates a rippling effect which is a simplistic 

representation of how nonlinearity may occur in the vocal 

system of a mammal. �̅�(𝑖) in (4) is the phasor used to 

drive wavetable synthesis: 

 

�̅�(𝑖) = √𝑚𝑜𝑑[(√𝑘 + 1 𝑝(𝑖))2 , 1] 

where 𝑝(𝑖) is the original linear phasor and k ϵ [1,6] is 

the user controlled complexity level. 

2.3 Modelling the Vocal Tract 

The physically-inspired vocal tract shown in Figure 3 is 

implemented using a waveguide filter model as in [4] 

with fifteen segments separated by scattering junctions 

−𝑘2 
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Figure 2: A waveguide filter system including scattering junctions 
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𝑔[𝑛] =  (2) 

The glottal flow, 𝑔[𝑛], for samples n = 0, 1, …, N where N is the total number of samples in each period,𝑒1is the time 

throughout the pulse period at which the vocal folds fully open, and 𝑒2 is the time at which they fully close, and  

0 ≤ 𝑒1 ≤ 𝑒2 ≤ 𝑁. 
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whose coefficients are controlled by the user and relate 

directly to the radii of the vocal tract segments. The input 

to the waveguide filter is the glottal flow waveform (2). 

The lip reflection is modelled explicitly by a high pass 

filter which reflects low frequencies back into the vocal 

tract and transmits high frequencies as output. In 

addition, the left travelling waves are also reflected back 

at the glottis. The controllable dynamics include 

amplitude, fundamental frequency variation, complexity 

control (3), noise control and duration. 

The proposed model of the vocal tract is a totally lossless 

system, resulting in formants with very narrow 

bandwidth. Attempts have been made to model losses, 

such as [14] which incorporates factors like damping due 

to vibrating tract walls, fluid conduction and heat 

conduction losses. In this paper, a simplified version of 

such an effect is achieved by crossfading between the 

unfiltered and filtered signals. This enables user 

controlled changes to the signal-to-noise ratio, and the 

prominence of the formants. 

In the signal-based model, the source signal is fed into a 

vocal tract model consisting of multiple parallel band-

pass filters representing the signal formants, each with 

user controllable centre frequency, resonance and gain. 

Frequency and amplitude curves are exposed to the user, 

allowing for independent variation of the formants. 

2.4 Parametrisation through Linear Prediction 

Analysis 

The vocal tract characteristics of animals during 

phonation is still relatively unknown. For human speech 

synthesis, vocal tract configurations have been obtained 

via Linear Predictive Coding (LPC) analysis. In [4], a 

digital filter is designed based on a desired formant 

structure, the coefficients of which can be used to 

recursively calculate the vocal tract radius via an 

algorithm such as the Levinson-Durbin recursion [15], 

[16]. 

Mammalian vocalisations are less periodic and less 

predictable in their formant structure than human speech, 

which makes the design of a dataset of vocal tract 

configurations difficult. LPC was performed to 

demonstrate that such techniques can also work for a 

mammalian model, and some configurations are stored as 

examples to be used and edited.  

The LPC analysis is carried out as follows: The input 

audio file is downsampled, for a fixed frame size, to 

achieve greater filter resolution at low frequencies. A 

high-pass filter is applied to account for the low-pass 

signal behaviour. The Levinson-Durbin recursion is then 

implemented to calculate the filter coefficients, which are 

subsequently used to calculate the vocal tract segment 

radii. Note that the delay parameter in the synthesis 

model must be set equal to the downsample rate to 

achieve formant accuracy. 

In order to represent the changing shape of the vocal tract 

throughout phonation, LPC analysis was performed on a 

sample file split into multiple sections. The filter 

coefficients for these sections are then stored and sent to 

the vocal tract model during phonation. The bifurcation 

between states is handled by linearly interpolating the 

coefficients. 

In order to implement sample-accurate feedback delay 

for the physical vocal tract model in Pure Data, a re-

blocking technique was required, in which the block size 

for the vocal tract model was reduced based on the delay 

value chosen by the user. 

3 ANALYSIS 

Two example vocalisations, a lion’s roar and the growl 

of a wolf, were analysed via spectral examination and 

listening tests. In total, four synthesis models were used, 

with the intention of testing the effectiveness of 

physically-inspired modelling vs signal-based modelling 

and the effectiveness of the FM nonlinearity 

implementation (3) vs Phasor Wrapping (4): 

 

𝑔(𝑛) 
𝑜𝑢𝑡𝑝𝑢𝑡 

Figure 3: Block diagram of the physically-inspired source filter model. The glottal flow passes through 

the vocal tract which is modelled as a series of cylindrical tubes with varying radii. Waves are reflected 

back into the system at the glottis and the lip. 
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Model 1: FM synthesis of 𝑔(𝑛) / Physical Vocal Tract 

Model 2: Phasor Wrapping synthesis of 𝑔(𝑛) / Physical 

Vocal Tract 

Model 3: FM synthesis of 𝑔′(𝑛) / Signal-Based Vocal 

Tract 

Model 4: Phasor Wrapping synthesis of 𝑔′(𝑛) / Signal-

Based Vocal Tract  

3.1 Example 1: A Lion’s Roar 

The spectrogram analysis in Figure 4 shows more 

colouration in the low frequency bins of the synthesised 

lion’s roar compared to the real version (sound files 

obtained from http://soundbible.com), suggesting that the 

lip reflection filter, designed to reduce the prominence of 

the glottal flow fundamental frequency and its low 

frequency partials, needs to be improved to create a 

vocalisation whose spectrum matches more closely that 

of the real signal. 

A notable difference between the two spectrograms in 

Figure 4 is the existence of an additional formant in the 

real signal at around 220Hz. This can be attributed to the 

close proximity of the two formants at 220Hz and 320Hz. 

The filter order of 15 was not high enough to accurately 

represent these neighbouring peaks in the spectrum at the 

start of the roar. 

3.2 Example 2: A Wolf Growl 

Figure 5 shows that general formant dispersion appears 

to match well between the real wolf vocalisation and the 

Figure 4: Log-frequency spectrogram of a recording of a lion’s roar and a synthesised lion’s roar produced 

using a physically-inspired synthesis model. 

Figure 5: Log-frequency spectrogram of a real wolf growl and a synthesised wolf growl produced using a 

physically-inspired synthesis model 
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physically-inspired synthesis. However the relative 

amplitudes of these formants appear different. Through 

analysis of the output signals, the formant positions for 

the wolf growl sound effect were obtained for 

comparison. 

The table of formants below suggests that the formant 

positions for the signal-based model are easier to control. 

This is to be expected since these are directly chosen and 

controlled by the user. However, the physically-inspired 

model appears to introduce more complexity to the signal 

and produces realistic articulation due to the bifurcation 

between vocal tract states. This hypothesis is supported 

by the listening tests performed in section 4.  

4 LISTENING TESTS 

4.1 Testing Methodology 

Both sound examples listed in section 3 were tested using 

a methodology based on the MUSHRA listening test [17] 

(a similar approach to evaluating synthesis techniques 

was used in [18]). A bespoke testing environment was 

developed in Pure Data for this project in which 

participants were asked to rate multiple lion roars (two 

real, six synthesised) and wolf growls (one real, five 

synthesised) by realism on a scale of 0 to 100. The tests 

were all performed over headphones (Sennheiser HD 25 

II) and a total of eleven participants took part in each 

listening test with varying levels of audio experience. 

4.2 Test 1: A Lion’s Roar 

Figure 8 shows that the physically inspired models 

designed for this project (Models 1 & 2) produced 

roaring sounds that often ranked higher than their signal-

based counterparts. The poor performance of Model 4 

suggests that the physical assumptions around 

nonlinearity and lip reflection techniques used in this 

work improve the effectiveness of synthesising a dense, 

harsh vocalisation such as a lion roar. 

It is clear through listening to the output signals that the 

physical vocal tract succeeds in producing more realistic 

sounding articulation. Rather than a generic rise and fall 

of formant frequency, there is perceptually more 
expression in the roar. This can be attributed to the vocal 

tract configurations calculated via Linear Prediction 

analysis. 

4.3 Test 2: A Wolf Growl 

Figure 9 shows Model 2 performed poorly in Listening 

Test 2. In general, the FM nonlinear synthesis technique 

ranked well. Listening to the output samples suggests that 

this is due to the lack of variation present in the 

alternative phasor wrapping technique. In particular, FM 

synthesis introduces jitter and shimmer as well as natural-

sounding variation. 

5 CONCLUSION 

A physically-inspired source-filter system was 

implemented based on detailed modelling of the glottal 

waveform and a waveguide filter representing the vocal 

tract. It was also demonstrated that Linear Prediction 

analysis could be used to create articulation that is crucial 

to producing life-like sounds. Such articulation was 

observed in the synthesised signals, resulting in the 

model performing well during subjective evaluation, 

often being perceived as more realistic than signal-based 

methods when synthesising a lion’s roar. It is hoped that 

this will motivate further research into mapping of 

mammalian vocal tract parameters to Linear Prediction 

filter coefficients. 

The use of FM synthesis techniques for replicating 

nonlinearity in a physical system also performed well in 

the listening tests, which should provide a platform for 

further analysis of the ways to model complexity in 

animal phonation. It should however be noted that 

analysis of the various synthesis techniques highlighted 

issues in the accuracy of the formant locations over time 

for the physically-inspired models. Spectral analysis 

suggested that the synthesis would benefit greatly from a 

more detailed lip reflection filter, and more detailed 

modelling of the losses throughout the vocal tract. 

6 FURTHER WORK 

Since the parameters built into these models are 

physically relevant, it is possible for synthesis to be 

embedded into a physical video game engine. This could 

be facilitated by parameter development and grouping, 

enabling the synthesis model to respond to game controls 

 

Figure 7: Listening test participant details. 

Figure 6: Formant positions in Hz for the real signal, 

Model 1 and Model 4 

Real
Model 1 

(Physical)

Model 4 

(Signal-Based)

F1 90 Hz 138 Hz 90 Hz

F2 441 Hz 400 Hz 455 Hz

F3 565 Hz 634 Hz 620 Hz
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such as animal size, intended emotion and listener 

distance. Since CPU resource may be scarce in this 

scenario, some of the realism of a physical model may 

have to be substituted for the computational efficiency of 

a signal-based model. 

This paper has outlined a foundation for research into 

physically-inspired mammalian vocalisation synthesis. 

Further work should build on this foundation to analyse 

in detail the nonlinearity present in animal vocal systems, 

such as advanced modelling of the vocal folds and vocal 

membrane as coupled oscillators. 

More physically-inspired features based on human 

speech synthesis research could also be added to the 

model. These should include the implementation of a 

realistic lip reflection filter, and a 3-way scattering 

junction in the vocal tract to model sound waves 

propagating through various cavities in the vocal system. 

The losses outlined in [14] should also be fully 

Figure 8: Listening test results for a lion’s roar. CF represents the ‘Creature Factory’ signal-based model 

from [1]. RT represents synthesis from an online Lion Roar Synthesis Tutorial also created by Andy Farnell 

http://www.obiwannabe.co.uk/tutorials/html/tutorial_roar.html 

 

Figure 9: Listening test results for a wolf growl. CF represents the ‘Creature Factory’ signal-based 

model from [1]. 

 

http://www.obiwannabe.co.uk/tutorials/html/tutorial_roar.html
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implemented to more closely reproduce formants with 

varying bandwidths. 

The creation of a comprehensive dataset of vocal tract 

configurations, like those used to create vowel sounds in 

human speech synthesis would benefit this field of 

research. Linear Prediction techniques as outlined in this 

paper could be used to achieve this. Such a dataset would 

need to incorporate a wide variety of formant dispersions. 
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